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We considered un-driven damped oscillations produced by a damping force that is linear 
in velocity 𝑚�̈� + 𝑏�̇� + 𝑘𝑥 = 0.  Divide the mechanical equation through by mass m and define 
two important rates: �̈� + 2𝛽�̇� + 𝜔0

2𝑥 = 0, where 2𝛽 ≡ 𝑏/𝑚, and 𝜔0
2 ≡ 𝑘/𝑚.  We tried a 

solution of the form 𝑥(𝑡) = 𝑒𝑟𝑟, and found an auxiliary equation with solution 𝑟 = −𝛽 ±

�𝛽2 − 𝜔02.  The general solution is 𝑥(𝑡) = 𝑒−𝛽𝑟 �𝐶1𝑒
�𝛽2−𝜔0

2  𝑟 + 𝐶2𝑒
−�𝛽2−𝜔0

2  𝑟�.  The form of 

the solution depends critically on the relative size of the two rates 𝛽 and 𝜔0. 

1)  Un-damped oscillator 𝛽 = 0.  The radical becomes �−𝜔02 = 𝑖�𝜔02 = 𝑖𝜔0, and the 
solution reverts to our previous results 𝑥(𝑡) = 𝐶1𝑒𝑖𝜔0  𝑟 + 𝐶2𝑒−𝑖𝜔0  𝑟.   

2) Weak damping (𝛽 < 𝜔0, underdamping).  The radical also produces a factor of “i”, 
resulting in 𝑥(𝑡) = 𝑒−𝛽𝑟�𝐶1𝑒𝑖𝜔1𝑟 + 𝐶2𝑒−𝑖𝜔1𝑟�, with 𝜔1 ≡ �𝜔02 − 𝛽2 a frequency lower 
than the un-damped natural frequency.  This equation describes oscillatory motion under 
an exponentially damped envelope.  The damping rate (or decay parameter) is 𝛽.  One 
can re-write the solution as 𝑥(𝑡) = 𝐴 𝑒−𝛽𝑟 cos(𝜔1𝑡 − 𝛿). 

3) Strong damping (𝛽 > 𝜔0, overdamping).  In this case �𝛽2 − 𝜔02 is real and the solution 

is 𝑥(𝑡) = 𝐶1𝑒
−�𝛽−�𝛽2−𝜔0

2�  𝑟
+ 𝐶2𝑒

−�𝛽+�𝛽2−𝜔0
2�  𝑟

.  This is a sum of two negative 
exponentials, one of which decays faster than the other – there is no oscillation. The 
dominant decay parameter is 𝛽 − �𝛽2 − 𝜔02. 

4) Critical damping (𝛽 = 𝜔0). We need the other independent solution 𝑡𝑒−𝛽𝑟 for the second 
order differential equation. Therefore, the solution is 𝑥(𝑡) =  𝐶1𝑒−𝛽𝑟 + 𝐶2𝑡𝑒−𝛽𝑟. There is 
also no oscillation, and the decay parameter is 𝛽.  

If we plot the decay parameter vs. 𝛽, the maximum is at the critical damping. This means the 
oscillation dies out the fastest at the critical damping value. One application of this is in the 
design of weight scales, and shock absorbers for cars. 

We next considered a driven damped harmonic oscillator.  We take the driving function to be 
harmonic in time at a new frequency called simply 𝜔, which is an independent quantity from the 
natural frequency of the un-damped oscillator, called 𝜔0.  The equation of motion is now 
�̈� + 2𝛽�̇� + 𝜔0

2𝑥 = 𝑓0 cos(𝜔𝑡).  We now employ a trick similar to that used to solve for the 
velocity of a charged particle in a uniform magnetic field.  Consider the complementary problem 
of the same damped oscillator being driven by a force 90o out of phase, with solution 𝑦(𝑡): 
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�̈� + 2𝛽�̇� + 𝜔0
2𝑦 = 𝑓0 sin(𝜔𝑡).  Now define a complex combination of the two unknown 

functions 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡).  Combine the two equations in the form of “x-equation” + i ”y-
equation”. This can be written more succinctly as �̈� + 2𝛽�̇� + 𝜔0

2𝑧 = 𝑓0𝑒𝑖𝜔𝑟.  Note that the 
solution to the original problem can be found from 𝑥(𝑡) = 𝑅𝑒[𝑧(𝑡)]. 

We now want to solve this equation: �̈� + 2𝛽�̇� + 𝜔0
2𝑧 = 𝑓0𝑒𝑖𝜔𝑟.  We tried a solution of the 

form 𝑧(𝑡) = 𝐶𝑒𝑖𝜔𝑟 and found this expression for the complex pre-factor: 𝐶 = 𝑓0
𝜔0
2−𝜔2+𝑖2𝛽𝜔

.  We 

can write this complex quantity as a magnitude and phase as 𝐶 = 𝐴𝑒−𝑖𝑖, where 𝐴 is the 
amplitude and 𝛿 is the phase, both real numbers.  Solving for 𝐴 and 𝛿 in terms of the oscillator 

parameters gives 𝐴2 = 𝑓02

�𝜔0
2−𝜔2�2+(2𝛽𝜔)2

, and 𝛿 = tan−1 � 2𝛽𝜔
𝜔0
2−𝜔2�.  Finally, we can write the 

solution to the “z equation” as 𝑧(𝑡) = 𝐶𝑒𝑖𝜔𝑟 = 𝐴𝑒𝑖(𝜔𝑟−𝑖).   

The answer to the original problem is just the real part of this expression: 𝑥(𝑡) = 𝑅𝑒[𝑧(𝑡)] =
𝐴 cos(𝜔𝑡 − 𝛿), where 𝜔 is the frequency of the driving force.  This represents the long-time 
persistent solution of the motion.  It shows that the oscillator eventually adopts the same 
frequency as the driving force.  In addition there is a solution to the homogeneous problem 

�̈� + 2𝛽�̇� + 𝜔0
2𝑥 = 0, which we solved before: 𝑥ℎ(𝑡) = 𝑒−𝛽𝑟 �𝐶1𝑒

�𝛽2−𝜔0
2  𝑟 + 𝐶2𝑒

−�𝛽2−𝜔0
2  𝑟�.  

The homogeneous solutions represent what the oscillator “wants to do” on its own, but will die 
out in time.  The full solution is the sum of the particular solution and the homogeneous solution.  
In the case of small loss (𝛽 < 𝜔0) the full solution can be written as 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 − 𝛿) +
 𝐴𝑟𝑟 e−𝛽𝑟 cos(𝜔1𝑡 − 𝛿𝑟𝑟), where the first part is the particular solution and the second part is the 
transient (homogeneous) solution.  We call it transient because of the e−𝛽𝑟 factor, which shows 
that the initial motion and initial conditions (specified by 𝐴𝑟𝑟 and 𝛿𝑟𝑟) will eventually die off and 
the persistent driven motion will dominate. 

The amplitude function 𝐴 = 𝑓0

��𝜔0
2−𝜔2�2+(2𝛽𝜔)2

 shows a resonant response.  As a function of 

natural frequency 𝜔0 at fixed driving frequency 𝜔, the maximum amplitude is at 𝜔0 = 𝜔 . One 
example is tuning the natural frequency of the local oscillator (LO) in a radio to match the 
driving frequency from a specific radio station. As a function of frequency 𝜔 at fixed natural 
frequency 𝜔0, there is a maximum amplitude of the persistent motion response when the driving 
frequency is equal to 𝜔2 = �𝜔02 − 2𝛽2.  The quality factor of the resonance is a measure of how 
large and sharply peaked the amplitude response looks.  It is defined as the ratio of the frequency 
at which there is peak energy (or power) amplitude over the frequency bandwidth known as the 
full-width at half maximum (FWHM).  The FWHM is defined as the frequency width at the half-
power height. (By “power” we mean something proportional to amplitude squared.)  The quality 
factor, or Q, is given by𝑄 = 𝜔0/2𝛽.  As the dissipation (parameterized by𝛽) decreases, the 
quality factor grows.  The quality factor is equal to 𝜋 times the ratio of the decay time (1/𝛽) to 
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the natural oscillation period.  A high-Q oscillator is therefore one which executes many 
oscillations on the time scale of the 1/e amplitude decay time. 

The phase evolution through resonance goes from 0 well below resonance to 𝜋 well above 
resonance, with 𝛿 = 𝜋/2 exactly at resonance.  The slope of 𝛿(𝜔) at resonance is 1

𝛽
= 2𝑄/𝜔0. 

We considered several examples of resonant phenomena in mechanical and electrical 
systems, as noted in the Supplementary Material (Lectures 8 and 9).  One interesting example 
was that of crowd synchrony on the Millennium bridge in London.  The pedestrians on the 
bridge acted as a set of periodic driving forces on the bridge position.  The bridge acted back on 
the pedestrians in a manner that caused their motion to synchronize and amplify the oscillations 
of the bridge.  This led to closing of the bridge, and modifications to the structure to increase the 
damping force on the bridge. 

http://www.physics.umd.edu/courses/Phys410/Anlage_Fall15/Supp.htm

